1 research outputs found

    Adaptive Quantum Homodyne Tomography

    Get PDF
    An adaptive optimization technique to improve precision of quantum homodyne tomography is presented. The method is based on the existence of so-called null functions, which have zero average for arbitrary state of radiation. Addition of null functions to the tomographic kernels does not affect their mean values, but changes statistical errors, which can then be reduced by an optimization method that "adapts" kernels to homodyne data. Applications to tomography of the density matrix and other relevant field-observables are studied in detail.Comment: Latex (RevTex class + psfig), 9 Figs, Submitted to PR
    corecore